Symplectic real Bott manifolds
نویسندگان
چکیده
منابع مشابه
Classification of Real Bott Manifolds
A real Bott manifold is the total space of a sequence of RP 1 bundles starting with a point, where each RP 1 bundle is the projectivization of a Whitney sum of two real line bundles. A real Bott manifold is a real toric manifold which admits a flat riemannian metric. An upper triangular (0, 1) matrix with zero diagonal entries uniquely determines such a sequence of RP 1 bundles but different ma...
متن کاملCohomological Rigidity of Real Bott Manifolds
Abstract. A real Bott manifold is the total space of iterated RP 1 bundles starting with a point, where each RP 1 bundle is projectivization of a Whitney sum of two real line bundles. We prove that two real Bott manifolds are diffeomorphic if their cohomology rings with Z/2 coefficients are isomorphic. A real Bott manifold is a real toric manifold and admits a flat riemannian metric invariant u...
متن کاملClassification of Real Bott Manifolds and Acyclic Digraphs
We completely characterize real Bott manifolds up to diffeomorphism in terms of three simple matrix operations on square binary matrices obtained from strictly upper triangular matrices by permuting rows and columns simultaneously. We also prove that any graded ring isomorphism between the cohomology rings of real Bott manifolds with Z/2 coefficients is induced by an affine diffeomorphism betwe...
متن کاملEnumerative invariants of stongly semipositive real symplectic manifolds
Following the approach of Gromov and Witten [3, 20], we define invariants under deformation of stongly semipositive real symplectic manifolds provided essentially that their real locus is Pin. These invariants provide lower bounds in real enumerative geometry, namely for the number of real rational J-holomorphic curves which realize a given homology class and pass through a given real configura...
متن کاملEnumerative invariants of stongly semipositive real symplectic six-manifolds
Following the approach of Gromov and Witten [4, 22], we define invariants under deformation of stongly semipositive real symplectic six-manifolds. These invariants provide lower bounds in real enumerative geometry, namely for the number of real rational J-holomorphic curves which realize a given homology class and pass through a given real configuration of points.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2011
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2011-10729-9